
SFPCI - VME SERIES
User’s Manual
and Installation Guide
Solflower Computer, Inc
3511 Thomas Road, Ste-2

Santa Clara, CA 95054
(408) 982-8680, Fax (408) 982-8685

http://www.solflower.com

olflower
Computer, Inc.
SFPCI-VME SERIES User’s Manual and Installation Guide rev 2.0

2

Credit and Trademarks

SFPCI-VME, SF_PCI, SF_VME, PVME and PCI-VME are trademarks of Solflower
Computer, Inc.

SPARC, SPARCstation, SPARCengine, SunOS, Solaris are registered trademarks of
SPARC International, Inc. licensed exclusively to Sun Microsystems, Inc.

Universe is a registered trademark of Tundra Semiconductor Corporation.

This equipment generates, uses and can radiate radio frequency energy and if not
installed and used in accordance with the Instruction Manual, may cause interference in
radio communications.

Operation of this equipment in a residential area is likely to cause interference in which
case the user at his own expense will be required to take whatever measures may be
required to correct the interference.

This document presents information for users of Solflower Computer, Inc.’s SFPCI-
VME Series of PCI-to-VME adapters.

Although the information contained within this document is considered accurate and
characteristic of the subject product, Solflower Computer, Inc. reserves the right to
make changes to this document and any product described herein to improve reliability,
function or design. Solflower Computer, Inc. does not assume any liability arising out of
the application or use of any product or circuit described herein.

No part of this document may be copied or reproduced in any form or by any means
without the prior written consent of Solflower Computer, Inc.

Copyright 1997-2006, Solflower Computer, Inc.
SFPCI-VME SERIES User’s Guide and Installation Manual rev 2.0

Overview
CHAPTER 1 Overview

1.1 INTRODUCTION

The SFPCI-VME series of products provide a PCI-to-VMEbus interface, and the
capability of handling PCI master and slave functions. In addition, the series provide
VMEbus arbiter function, built-in DMA engine on board, as well as other system
controller functions of the VMEbus as described in the following sections.

The major components of the SFPCI-VME product come in two categories:

• The hardware component is made up of a PCI interface, a VMEbus interface, a flat
cable, and optional VME card cage including power supply and back-plane for
integrating the VME boards.

• The software component is an optional driver that is installed in the Solaris 2.x. It
enables users to retain their existing VMEbus drivers and transparently migrate their
present VMEbus subsystem to a PCI-Based SPARC platform.

1.2 APPLICABLE DOCUMENTS

PCI Specification, Revision 2.1

VMEbus Specification Manual, Revision D IEEE STD 1014-9187

1.3 GENERAL DESCRIPTION

The SFPCI-VME series is a PCI-to-VMEbus adapter allowing master and slave
accesses between these two host busses. In addition, VMEbus masters and slaves may
carry out information transfer with each other without stepping on the PCI bus.

A VMEbus master to PCI slave access takes place in a specified 1 MB “window,” via a
mapping register. A24 and A32 VMEbus accesses are also supported.

The PCI bus master to VMEbus slave addressing is accomplished in accordance with
the PCI addressing scheme. Internal mapping registers inside the SFPCI-VME series are
used to access the entire 4 GB of PCI bus address space. SFPCI-VME can transfer data
from/to VME bus upto 60-70Mb/sec, and supports the following address and data
transfer modes.

- A32/A24/A16 Master and Slave
- D64 (MBLT)/D32/D16/D08 Master and Slave
- BLT, ADOH, RMW, LOCK
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 3

Overview
1.4 UNPACKING INSTRUCTIONS

Perform a visual inspection of the shipping carton for any handling damage. If any
shipping carton is severely damaged, open the carton box with the carrier agent’s
presence. Carefully remove the contents and ensure that all the pieces are there. The
printed circuit boards are wrapped in electrostatic-safe bags. We recommend that you
save the shipping carton and the packing material for future use, in case the product
must be reshipped or returned to Solflower.

The basic components of the SFPCI-VME are shipped in one box containing the
following

1. PCI short card SF_PCI
2. VME 6U card SF_VME
3. 100 pin flat shielded cable
4. Solaris 2.x device driver for SFPCI-VME
5. User manual and installation guide
6. 6U-VME enclosure (optional)

Caution: Since electrostatic discharge may damage the printed circuit boards, do not remove the
printed circuit boards from the static bags unless you are wearing grounding straps.

FIGURE 1 SFPCI-VME Components

6U-VME Enclosure VME 6U card SF_VME

PCI short card SF_PCI

Cable

V
M

E PC
I

rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 4

SFPCI-VME Series Installation
CHAPTER 2 SFPCI-VME Series
Installation

2.1 Jumper Installation

Due to pin count limitations between the PCI interface board and the VMEbus, only
four (4) continuous interrupt levels may be selected out of the seven (7) possible VME
bus interrupts.

2.1.1 Interface Card Jumpers Select

The SFPCI-VME Series boards are shipped wiht standard settings at the factory as
described below. Users may wish to alter any or all of the default settings to better suit
their particular system environment.

TABLE 1 Interrupt select jumpers

Interrupt Level Select Jumper At Position Default

IQ1 IQ2 IQ3 IQ4 1 2 3 4 In

IQ4 IQ5 IQ6 IQ7 4 5 6 7 Out

TABLE 2 Bus Request and Bus Grant select jumpers

Bus Request Select Bus Grand Select Jumper At Position Default

BR0 BG0 0 Out

BR1 BG1 1 Out

BR2 BG2 2 Out

BR3 BG3 3 In
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 5

SFPCI-VME Series Installation
The interrupt level select BR and BG jumpers on the VMEbus interface board must
match the interrupt level selected on the PCI interface card

Example: If PCI card BG3 is selected then the BG3 jumper on VME card must be set to
IN

FIGURE 2 SFPCI-VME set for BG3 and BR3 Interrupt Level 1234

3
2
1
0

BGOUTBRN

D&C

D&F

AM CODE

1234
4567

IRQn

3
2
1
0

3 2 1 0

RBRQ

BGN

SF_PCI Card

Ready
LED

4 3 2 1
7 6 5 4

Interrupt SEL

D&C D&F

SF_VME Card
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 6

SFPCI-VME Series Installation
2.1.2 VME Backplane Jumper Select
The jumpers on VMEbus backplanes for connecting Bus Grand and interrupt
acknowledge signals. Make sure these jumpers are removed from the slot in which the
VME cards will be installed

FIGURE 3 SFPCI-VME Enclosure with 6-Slot and 4-Slot Back-plane

1 2 3 4 5 6
SLOT NUM BER

Slot 4

Slot 3

Slot 2

Slot 1

L ast S lot / F irst S lot

In terna l
SC SI conn .

IN

O U T
1
2

3

B G 3 IA C K

V M E In terface
C om ponen t S ide
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 7

SFPCI-VME Series Installation
2.2 SF_PCI Card Installation

Before you start with the installation, you may refer to system owner’s guide for the
instruction how to install PCI card to Sun system. The Sun doc is online and available at
the web site www.sun.com

Follow these instructions:

- Power off the system.
- Remove the side access cover.
- Attach the wrist strap.

Caution - Use proper ESD grounding techniques when handling components. Wear an antistatic
wrist strap and use an ESD-protected mat. Store ESD-sensitive components in antistatic bags
before placing them on any surface.

- Install the PCI card as follows

a. Position the PCI card into the chassis.
b. Lower the PCI card connector so that it touches its associated PCI card slot on
the motherboard.
c. Guide the PCI card back panel into the chassis backpanel.
d. At the two upper corners of the card, push the card straight downward into the
slot until the card is fully seated.
e. Using a Phillips-head screwdriver, replace the screw securing the card bracket
tab to the system chassis. Replace the side access cover.

2.2.1 Install SF_PCI Card to Sun Microelectronics (SME) Ultra AX SPARCengine

The Ultra AX SPARCengine provides 4 PCI slots. The two 64 bit connectors are PCI
bus A and the other two, hardwired with internal devices are PCI bus B. You can install
PCI short card to any available PCI slot, but for best performance, the PCI short card
should be installed in 64bit PCI slot (PCI bus A).
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 8

SFPCI-VME Series Installation
FIGURE 4 SF_PCI card installation to Ultra AX SPARCengine

2.2.2 Install SF_PCI Card to SME Ultra AXi SPARCengine

The Ultra AXi SPARCengine provides 6 PCI slots. They are all 32 bits, 33MHz, 5V
only. PCI slot 1,2,3 are on internal PCI-A bus segment and PCI slot 4,5,6 are on PCI-B
bus segment. The PCI Short Card can be installed in any slot of the ULTRA AXi mother
board, except for slot 5 because the onboard UPA connector blocks the PCI-VME 64 bit
card edge.

PCI Bus B

PCI Bus A

PCI - VME
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 9

SFPCI-VME Series Installation
FIGURE 5 Ultra AXi Layout

PCI bus A

PCI bus B
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 10

SFPCI-VME Series Installation
2.2.3 Install SF_PCI Card to Sun Ultra 5, Ultra 10

The Sun Ultra 5 and Ultra 10 have 3 and 4 32 bit PCI slots respectively for expansion.
PCI-VME can be installed in any available PCI slot without any restriction. PCI-VME
card will detect Ultra5/10 PCI bus and adjust automatically to support 32 bit. The 64 bit
portion on PCI-VME card is not used.

VME space can be mapped to full size 2Gig because a separated second bus is used to
support on-board devices.

FIGURE 6 Install SF_PCI card to Ultra 5
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 11

SFPCI-VME Series Installation
FIGURE 7 Install SF_PCI Card to Ultra10
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 12

SFPCI-VME Series Installation
2.2.4 Install SF_PCI Card to Ultra 30 / Ultra 60 system

The Ultra 30 / Ultra 60 system provide 4 PCI slots. You can install PCI Short Card to
one of the slot 2, 3 or 4. Slot 1 is dedicated for 3.3V PCI card. Note that slot 2,3 and 4
share the same bus with internal storage and network devices.

FIGURE 8 install PCI card to Ultra30 / Ultra 60 system
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 13

SFPCI-VME Series Installation
FIGURE 9 Ultra 30 back side

2.2.5 Select SF_PCI slot on Ultra 450 system

FIGURE 10 install SF_PCI card to Ultra 450 system
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 14

SFPCI-VME Series Installation
There is total 10 PCI slots available on the Ultra 450 system. You can install PCI Card
to any PCI slot except the 3.3V slot (slot 4,5 and 6). It is also not recommended to
install PCI short card in slot 10. This slot is shared with to the internal devices such as
SCSI and network. Any other slot can be used.

FIGURE 11 Ultra 450 Mother Board and PCI slot location

For best performance, the PCI short card should be installed in slots supported by
different buses and different PCI-UPA bridges. Slot 7,8,9 share the same PCI bus F and
slot 1,2 and 3 share the same PCI bus D. This means if you have other devices already
installed in slot 1, 2 or 3, you should install the PCI short card to the slot 7, 8 or 9.

TABLE 3 450_SLOT_TABLE

PCI

Slot

PCI-UPA

Bridge

PCI

Bus

Slot Width (bits)/

Card Type (bits)

Clock Rates

(MHz)

DC Voltage/

Card Type

10 1 B 32 / 32 only 33 5 V & Univ

9 3 F 32 / 32 or 64 33 5 V & Univ

8 3 F 32 / 32 or 64 33 5 V & Univ

7 3 F 64 / 32 or 64 33 5 V & Univ

6 3 E 64 / 32 or 64 33 and 66 3.3 V & Univ

5 1 A 64 / 32 or 64 33 and 66 3.3 V & Univ

4 2 C 64 / 32 or 64 33 and 66 3.3 V & Univ

3 2 D 64 / 32 or 64 33 5 V & Univ

2 2 D 64 / 32 or 64 33 5 V & Univ

1 2 D 64 / 32 or 64 33 5 V & Univ

PCI-VME

PCI-VME
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 15

SFPCI-VME Series Installation
2.2.6 SF_PCI Installation on SunFireV250
There are 6 PCI slots on a Sun Fire V250. Any 5volt PCI slot (PCI4, 1, and 0) is OK to
install the SF_PCI card, as they are in the same PCI segment. All other PCI slots are
3.3V slots and are not suitable for SFPCI-VME. The following are sample installations.

PCI0: SF_PCI

PCI1: other, such as a SCSI controller

PCI2:

PCI3:

PCI4:

PCI5: XVR-100 graphic card

or

PCI0:

PCI1: other, such as a SCSI controller

PCI2:

PCI3:

PCI4: SF_PCI

PCI5: XVR-100 graphic card

TABLE 4 V250 PCI slots

PCI

Slot Bridge

PCI

Bus

Slot Width (bits)/

Card Type (bits)

Clock Rates

(MHz)

DC Voltage/

Card Type

5 JIO1 2b 64 / 32 or 64 33 and 66 3.3 V

4 JIO1 2a 64 / 32 or 64 33 5 V

3 JIO0 1a 64 / 32 or 64 33 and 66 3.3 V

2 JIO0 1b 64 / 32 or 64 33 and 66 3.3 V

1 JIO1 2a 64 / 32 or 64 33 5 V

0 JIO1 2a 64 / 32 or 64 33 5 V
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 16

SFPCI-VME Series Installation
FIGURE 12 V250 PCI slots location
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 17

SFPCI-VME Series Installation
2.2.7 SF_PCI card Installation on Sun Blade 1500
There are two bus segment for total of five PCI slots. PCI0, PCI1, PCI2, and PCI3 are
under one PCI segment while PCI4 is under another.

Slot 0 might be occupied by pre installed FireWire and USB card. This will leave a total
of 4 PCI slots available. And if one of the 4 PCI slot is used to install a graphic card
such as a XVR-100, this will further reduce the available PCI slots to 3. The following
scheme is an example of PCI slot assignment, and had been tested for SF_PCI cards.

PCI 0: FireWire USB card

PCI1:

PCI2: SF_PCI card

PCI3:

PCI4: XVR-100 Graphic card

In fact, with FireWire USB card at PCI0 and XVR-100 at PCI4, any one of the
remaining PCI slots (PCI1, 2, 3) can be installed with SFPCI, and tested to work.

TABLE 5 Sun Blade 1500 PCI slots

PCI

Slot

Slot Width (bits)/

Card Type (bits)

Clock Rates

(MHz)

DC Voltage/

Card Type

4 64 / 32 33 and 66 3.3 V

3 64 / 32 33 5 V

2 64 / 32 33 5 V

1 32 33 5 V

0 32 33 5 V
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 18

SFPCI-VME Series Installation
FIGURE 13 Sun Blade 1500 PCI slot location

2.3 VMEbus Interface Board Installation

The SF_VME card should be installed in slot 1as a system controller.

There are a total of up to six VMEbus slots available in the Solflower VMEbus card
cage SFVMEB1. Aside from the slot occupied by the SF_VME VMEbus interface
board, all of the other slots are available for “customer owned” VMEbus peripheral
boards. Plug in these boards and their associated cables as appropriate.

Since the Solflower’s VMEbus card cage comes with five cover plates from the factory,
make sure that all of the unused VMEbus slots are covered in order to maintain FCC
compliance and proper air flow.
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 19

SFPCI-VME Series Installation
2.4 Cable Installation

Check the pins of the connector on both sides for broken or bent pins. If all pins are not
bent or damaged, position the Solflower SF_VME card cage adjacent to the SPARC
system, and install the cable between the PCIbus interface board and the VMEbus
interface board. Make sure that the connectors are locked

The cable is marked as to VME and to PCIbus and should not be resversed. Note: If the
cable from PCI to VME is correctly connected and the power of VME box is on, the
green LED on PCI card is on for ready

2.5 Boot Up System

After the system is powered up and rebooted, Solaris will probe all installed PCI devices
and display the attached device configuration

Now go to section Software Installation Chapter 5 for install Solflower’s pvme device
driver.
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 20

Architecture Description
CHAPTER 3 Architecture Description

This section describes the general architecture of the PCI-VME chip Universe from
Tundra Microcomputer Corporation. The Universe chip consists of three major
modules: master module, slave module and interrupt module

3.1 VMEbus Interface

PCI Bus VME Bus

VME
Slave

VME
Master

VME
Interrupts

VME

Local
Master

Slave
Local

Local
Interrupts

VMEbus Slave Channel

. posted writes FIFO

. prefetch read FIFO

. coupled read logic

. posted writes FIFO

Local Bus Slave Channel

DMA Channel

Interrupt Channel

. DMA bi-direct FIFO

. Interrupt Handler

. Interrupter

. Register

PCI

PCI - VME Block Diagram

Bus Bus
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 21

Architecture Description
3.1.1 Universe as VMEbus Slave
The Universe VME Slave Channel accepts all of the addressing and data transfer modes
documented in the VME64 specification (except A64 and those intended to support 3U
applications, i.e. A40 and MD32). Incoming write transactions from the VMEbus may
be treated as either coupled posted, depending upon the programing of the VMEbus
slave image. With posted write transactions, data is written to a Posted Write Receive
FIFO (RXFIFO), and the VMEbus master receives data acknowledgment from the
Universe. Write data is transferred to the PCI resource from the RXFIFO without the
involvement of the initiating VMEbus master. With a coupled cycle, the VMEbus
master only receives data acknowledgment when the transaction is complete on the PCI
bus. This means that the VMEbus is unavailable to other masters while the PCI bus
transaction is executed.

Read transactions may be either prefetched or coupled. If enabled by the users, a
prefetched read is initiated when VMEbus master requests a block read transaction
(BLT or MBLT) and this mode is enabled. When the Universe receives the block read
request, it begins to fill its Read Data FIFO (RDFIFO) using burst transactions from the
PCI resource. The initiating VMEbus master then acquires its block read data from the
RD FIFO rather than from the PCI resources directly

3.1.2 Universe as VMEbus Master
The Universe becomes VMEbus master when the VME Master Interface is internally
requested by the PCI Bus Slave Channel, the DMA Channel, or the Interrupt Channel.
The Interrupt Channel always has priority over the other two channels. Several
mechanisms are available to configure the relative priority that the PCI Bus Slave
Channel and DMA Channel have over ownership of the VMEbus Master Interface.

The Universe’s VME Master Interface generates all of the addressing and data transfer
modes documented in the VME64 specification (except A64 and those intended to
support 3U applications, i.e. A40 and MD32). The Universe is also compatible with all
VMEbus modules conforming to pre-VME64 specifications. As VMEbus master, the
Universe supports Read-Modify-Write (RMW), and Address-Only-with-Handshake
(ADOH) but does not accept RETRY* as a termination from the VMEbus slave. The
ADOH cycle is used to implement the VMEbus Lock command allowing a PCI master
to lock VME resources.

3.2 PCI Bus Interface

3.2.1 Universe as PCI Slave

Read transactions from the PCI bus are always processed as coupled. Write transactions
may be either coupled or posted, depending upon the setting of the PCI bus slave image.
With a posted write transaction, write data is written to a Posted Write Transmit FIFO
(TXFIFO) and the PCI bus master receives data acknowledgment from the Universe
with zero wait states. Meanwhile, the Universe obtains the VMEbus and writes the data
to the VMEbus resource independent of the initiating PCI master.
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 22

Architecture Description
To allow PCI masters to perform RMW and ADOH cycles, the Universe provides a
Special Cycle Generator. The Special Cycle Generator can be used in combination with
a VMEbus ownership function to guarantee PCI masters exclusive access to VMEbus
resources over several VMEbus transactions.

3.2.2 Universe as PCI Master

The Universe becomes PCI master when the PCI Master Interface is internally
requested by the VME Slave Channel or the DMA Channel. There are mechanisms
provided which allow the user to configure the relative priority of the VME Slave
Channel and the DMA Channel.

3.3 Interrupter and Interrupt Handler

3.3.1 Interrupter

The Universe interrupt channel provides a flexible scheme to map interrupts to either
the PCI bus or VMEbus interface. Interrupts are generated from either hardware or
software sources. Interrupt sources can be mapped to any of the PCI bus or VMEbus
interrupt output pins. Interrupt sources mapped to VMEbus interrupts are generated on
the VMEbus interrupt output pins VIRQ# [7:1]. When a software and hardware source
are assigned to the same VIRQn# pin, the software source always has higher priority.

Interrupt sources mapped to PCI bus interrupts are generated on one of the INT#[7:0]
pins. To be fully PCI compliant, all interrupt sources must be routed to a single INT#
pin.

For VMEbus interrupt outputs, the Universe interrupter supplies an 8-bit STATUS/ID to
a VMEbus interrupt handler during the IACK cycle, and optionally generates an internal
interrupt to signal that the interrupt vector has been provided.

Interrupts mapped to PCI bus outputs are serviced by the PCI interrupt controller. The
CPU determines which interrupt sources are active by reading an interrupt status
register in the Universe. The source negates its interrupt when it has been serviced by
the CPU.

3.3.2 VMEbus Interrupt Handling

A VMEbus interrupt triggers the Universe to generate a normal VMEbus IACK cycle
and generate the specified interrupt output. When the IACK cycle is complete, the
Universe releases the VMEbus and the interrupt vector is read by the PCI resource
servicing the interrupt output. Software interrupts are ROAK, while hardware, and
internal interrupts are RORA.
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 23

Architecture Description
3.4 DMA Controller

The Universe provides an internal DMA controller for high performance data transfer
between the PCI and VMEbus. DMA operations between the source and destination bus
are decoupled through the use of a single bidirectional FIFO (DMAFIFO). Parameters
for the DMA transfer are software configurable in the Universe registers.

The principle mechanism for DMA transfers is the same for operations in either
direction (PCI to VME, or VME to PCI), only the relative identity of the source and
destination bus changes. In a DMA transfer, the Universe gains control of the source bus
and reads data into its DMAFIFO. Following specific rules of DMAFIFO operation, it
then acquires the destination bus and writes data from its DMAFIFO.

The DMA controller can be programmed to perform multiple blocks of transfers using
entries in a linked-list. The DMA will work through the transfers in the linked-list
following pointers at the end of each linked-list entry. Linked-list operation is initiated
through a pointer in an internal Universe register, but the inked-list itself resides in PCI
bus memory.
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 24

Performance Consideration
CHAPTER 4 Performance Consideration

As a VME bus bridge, the Universe’s most important function is passing data. This
function resides in three of its channels: the PCI Slave Channel, VME Slave Channel,
and the DMA Channel. Since each channel operates independently of the others and
because each has its own unique characteristics, the following analysis reviews the data
transfer performance for each channel. Where relevant, descriptions of some of the
factors affecting performance and how they might be tuned in different environments
are discussed.

The decoupled nature of the Universe can cause some confusion in discussing
performance parameters. This is because, in a fully decoupled bus bridge, the two
opposing buses operate at their peak performance independent of the other. The
Universe, however, because of the finite size of its FIFOs, can never represent a 100%
decoupled bridge. As the FIFOs fill or empty (depending on the direction of data
movement) the two buses tend to migrate to matched performance where the higher
performing bus is forced to slow down to match the lower performing one. This limits
the sustained performance of the device. Some factors such as the PCI Aligned Burst
Size and VME request/release modes can limit the effect of the finite FIFO size and
boost performance.

Another aspect in considering the performance of a device is bandwidth consumption.
The greater bandwidth consumed to transfer a given amount of data, the less is available
for the bus masters. Decoupling significantly improves the Universe’s bandwidth
consumption, and on the PCI bus allows it to use the minimum permitted by the PCI
specification.

To simplify the analysis and allow comparison with other devices, Universe
performance has been calculated using the following assumptions:

As a PCI master: - one clock bus grant latency

- zero wait state PCI target

As a VME master: - ideal VME slave response (DS* to DTACK* = 30ns)

Assumed as part of any calculations on VME, performance is the inclusion of VME
transceivers with propagation delay of 4 ns
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 25

Performance Consideration
TABLE 6 PCI Slave Channel Performance

Cycle Type Performance

Coupled Read

- PCI target response 24 PCI clocks

Coupled Write

- PCI target response 25 PCI clock

Decoupled Write

- non-block D32

- VME cycle time

- sustained perf (PABS=0)

- D32 BLT

- VME cycle time

- sustained perf (PABS=0)

- sustained perf (PABS=1)

- D64 MBLT

- VME cycle time

- sustained pefr (PAB=0)

- sustained perf (PABS=1)

165 ns

22 MB/s

105 ns

29 MB/s

33 MB/s

105 ns

39 MB/s

51 MB/s

Register access 8 wait states

TABLE 7 VME Slave Channel Performance

Cycle Type Performance

Coupled Read

- non-block

- block

420 ns

390 ns

Coupled Write

- non-block

- block

420 ns

390ns

Pre-fetched Read

- VME slave response (1st data beat)

- VME slave response (other data beats)

(see coupled table)

65 ns
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 26

Performance Consideration
Decoupled Write

- non-block slave response

- block slave response

130 ns

65 ns

Register Access

- reads

- writes

360 ns

240 ns

TABLE 8 DMA Channel Performance

Cycle Type Performance

PCI Reads

- PABS = 32 bytes

- PABS = 64 bytes

51 MB/s

74 MB/s

PCI Writes

- PABS = 32 bytes

- PABS = 64 bytes

53 MB/s

77 MB/s

VME Reads

- non-block D32

- D32 BLT

- D64 MBLt

25 MB/s

30 MB/s

60 MB/s

VME Writes

- non-block D32

- D32 BLT

- D64 MBLT

25 MB/s

42 MB/s

72 MB/s

TABLE 9 Daisy Chains

Daisy Chain Performance

IACK Daisy Chain

- active Universe

- no active Universe interrupt

21 - 36 ns

6-21 ns

Bus Grant Daisy Chain 32 ns

TABLE 7 VME Slave Channel Performance

Cycle Type Performance
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 27

Performance Consideration
PCI-VME performance is degraded by cable length between two adapter cards. The
cable delay is shown in the preceding table. This delay time must be added to the timing
calculation of the total system transfer per VME cycle.

TABLE 10 Cable Delay

Cable Delay

18” Cable 10 ns

36” Cable 20 ns

24’ Cable 90 ns
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 28

Software Installation
CHAPTER 5 Software Installation

5.1 Introduction

The Solflower PVME is PCI-to-VME bridge and nexus driver. It permits the
installation, configuration, and use of VME devices on Sun Microsystems UltraSPARC
platforms that support the PCI bus.

With the PVME bridge and nexus driver, most VME device drivers need only be written
to conform to Sun’s DDI, and they should work transparently, with no need to be aware
that they are communicating to Solaris through a bus bridge.

5.2 PVME Features

• Complete Solaris Nexus driver, providing leaf driver management and translation
for VME device mappings, interrupts, and DMA.

• Direct VMEbus access, through the export of VME address space device files.
• A special programmable DMA engine that transparently provides high-performance

DMA transfers to and from VME address spaces when the VME device files are
accessed by read(2) and write(2) operations.

• VMEbus power-off detection and management for user processes that access the
PVME device files directly.

• Selectable operation modes for VME block transfer, arbitration, and posted writes.
• Loadable and unloadable Nexus driver.

The PVME release 1.2 from Solflower is comprised of the following components:

5.3 Components

The PVME release from Solflower, in addition to the binary device driver itself, is
comprised of components for driver configuration and for illustrating testing and usage.
Table 8, “PVME release components,” lists and describes each component.
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 29

Software Installation
5.4 Installation

The PVME driver is delivered as a Solaris 2.x package.

The pkgadd(1m) operation should copy and install the PVME driver for you. If a
situation occurs where you need to circumvent the installation performed by
pkgadd(1m) and perform the installation by hand, the following summarizes the
operations performed by the package installation wrapper.

5.4.1 Driver Installation Location

Because the PVME driver is not essential for boot-up of the Solaris operating system,
by convention, the driver executable, pvme, and the driver configuration file,
pvme.conf, are copied to the /usr/kernel/drv directory. These components could also
have been placed in either of the other two Solaris device driver directories: /kernel/drv
or /platform/sun4u/kernel/drv.

5.4.2 Driver Device Links

The devlink.tab file for PVME is appended to the file of that name in the /etc directory.
We also make a backup file of the system /etc/devlink.tab file for safety’s sake.

TABLE 11 PVME release components

Component Description

pvme The loadable PVME device driver binary file

pvme.conf The device configuration file to assign at which SPARC processor inter-
rupt level the PVME device interrupts.

devlink.tab Specification for how to create the symbolic links in the /dev directory for
the PVME device files. This file is appended to /etc/devlink.tab when you
run “pkgadd” to install the PVME device driver.

Tests A directory that contains a test program and source code that shows you an
example of how to open the PVME device files and perform various oper-
ations, such as mapping a chunk of VME memory or dump the contents of
the PVME control registers. Included is a simple VME memory verifica-
tion test.

vmemem A directory that contains a simple VME pseudo driver. This driver pro-
vides access to a VME memory card. This is not necessarily the way you
would want to write such a driver, but it illustrates how to access and con-
figure a VME device under the PVME nexus driver.
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 30

Software Installation
cp /etc/devlink.tab /etc/devlink.tab.BAK

cat /etc/devlink.tab.BAK devlink.tab > /etc/devlink.tab

5.4.3 Driver Installation

The driver is installed via the Solaris add_drv(1m) command. The syntax of the
command used is:

add_drv -c vme -i ‘pvme “pci10e3,0”’ pvme

This causes lines to be appended to the system file /etc/driver_aliases. Henceforth, if the
UltraSPARC platform is shut down and rebooted, the PVME device driver will be
automatically loaded until the user requests that the driver be removed from the system.

5.4.4 Driver Removal

If the pvme driver needs to be removed from the system for any reason, the
rem_drv(1m) command must be used to “un-install” the driver. The following
command may be used to remove the driver:

rem_drv pvme

5.5 Theory of Operation

When the PVME driver is installed, it examines the PCI configuration space to find out
which addresses are already occupied and thus how much memory is available for
accessing VMEbus devices. If other PCI devices are installed in the same PCI space, the
amount of PCI space available for VMEbus access is reduced. However, the PVME
driver can, in many cases, work around holes in the PCI memory space caused by other
devices. The PVME driver accomplishes this by using up to 8 slave image windows for
mapping address ranges on the VMEbus.

For example, PCI frame buffers may occupy multiple megabytes of space for their bit-
planes. The PVME device and driver CANNOT use the PCI space occupied by these
bit-planes for mapping or accessing the VMEbus.

However, the PVME driver can detect the presence of such a device, and can sometimes
use the PCI memory ranges that are lower or higher than the occupied regions of
memory.

The PVME driver initializes VMEbus A32 windows to be 32 MBytes in size. If you
need more than 32 MBytes of contiguous A32 memory space, more than one PVME
slave image window will be used. Mapping requests made to the PVME driver will
silently detect whether a new slave image window is required, and if so, will allocate
and initialize the window so that the desired VMEbus addresses can be mapped. Unless
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 31

Software Installation
numerous “sparse” mappings are made, the user should not be aware that mapping
windows are being used.

The PVME device assigns the PCI physical addresses for accessing VMEbus address
space by using hardware base and bound registers. These base and bound registers
permit us to define space on the PCI bus for our use that did not show up when our
device was initialized by the Sun Open Boot PROM.

There is a problem here associated with the Sun Open Boot PROM configuration of PCI
devices. As far as the Sun Open Boot PROM can tell when it reads and configures the
devices on its PCI bus, the PVME device appears to occupy only 4KBytes or 64KBytes
of space (depending on the version) in PCI memory space.

Enabling a PVME slave image window onto the VMEbus makes this assumption
erroneous. After initialization and use, the PVME device, in essence, becomes “bigger”
than it was at OBP initialization time.

There is no way to tell the Open Boot PROM about this changed condition.

In theory, this seems bad--if devices are “hot plugged” into the PCI bus, the Sun Open
Boot PROM could assign some other device the space that we have allocated for the use
of our slave image windows. In practice, this is not a problem, since PCI hot plugging is
not at this time supported on Sun machines smaller than the Enterprise class.

Because of this consideration, if you have a PCI device that co-habits a PCI space with
the PVME device, it is SAFER to install your PCI device BEFORE the PVME device.
If you don’t do this, your PCI device may not be able to be installed.

Generally, you probably want to put the PVME device into the least-occupied PCI space
that will support it electrically. Sun configures all their onboard devices, plus supporting
eeprom, in the 32-bit PCI space. On the older UltraSPARC I and II based machines, this
occupies approximately the lowest megabyte of PCI address space in this slot, as well as
the highest 0x10000000 bytes of the PCI space. The PCI addresses used are somewhat
different on the UltraSPARC IIi based machines, such as the Ultra 5 and Ultra 10.

The space needs of standard Sun devices are not enough to force you to move the
PVME device to a different PCI space (usually).

5.6 pvme.conf - PVME Configuration File Options

The PVME configuration file, pvme.conf, contains a number of optional settings that
control the behavior and performance of the PVME VME-to-PCI bridge.

5.6.1 interrupt-priorities

Syntax:

interrupt-priorities=N;
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 32

Software Installation
The PVME property interrupt-priorities controls which SPARC processor interrupt
level is employed by the PVME device for VME interrupts. All VME interrupts are
mapped to a single SPARC interrupt at this time.

Values that interrupt-priorities may assume are: 3, 4, 6, 8, and 9.

As an example, the version of pvme.conf shipped by Solflower contains the line:

interrupt-priorities=4;

This sets the SPARC interrupt to IPL 4. This is the default.

5.6.2 pci-exclude

The pci-exclude property tells the PVME device driver to exclude a certain range of PCI
addresses for mapping. This is useful when some other PCI device is occupying a PCI
memory range, but doesn’t tell the Open Boot PROM via its PCI configuration base
register.

The PCI address range to exclude is specified by a pair of numbers of the form defined
as follows:

pci-exclude=<address>,<size>[,<address><size>];

where <address> is the physical address of the start of the excluded PCI range and
<size> is the number of bytes to exclude starting from <address>.

Note that one can specify multiple ranges to exclude by concatenating the
<address>,<range> pairs.

Example 1. pci-exclude directive usage

mark PCI address ranges as off-limits

pci-exclude=0x4000000,0x100000,0x5000000,0x100000;

5.6.3 PVME Control Register Settings

The pvme.conf file contains a number of parameter settings that control what modes or
values get set in the PVME control registers. The parameters and their permissable
values or ranges are listed below.

5.6.3.1 PCI Bus Controls

max-retry=1..0xf;

The pci-abs directive controls the PCI aligned burst size: 0=32 bytes 1=64 bytes

pci-abs= 0..1;
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 33

Software Installation
The parity directive controls whether or not the PVME bridge generates interrupts
when it detects a parity error. If the device generates an interrupt for this reason, Solaris
will panic.

parity= “on” | “off”;

5.6.3.2 VME Posted Write Control

Posted writes are a mechanism for improving the performance of writes by buffering the
stores and releasing the store operation before the actual transaction has completed.
When using posted writes, stores to the device appear to be faster, because the store
operation seems to finish earlier.

The post-writes directive controls whether to use posted writes when the CPU performs
a store to VME space.

post-writes= “yes” | “no”;

The posted-writec directive controls the number of bytes buffered for a posted write to
VME space by the CPU.

posted-writec=0..0xf;

The vme-posted-write directive controls whether to use posted writes when a VME
device performs a store to the system’s main memory--typically an I/O buffer.

vme-posted-write="yes";

5.6.3.3 VME Data Transfer Control

The following options control the use of VME block mode for VME accesses from the
UltraSPARC.

The dma-blt option, when turned “on” causes read(2) or write(2) system calls on file
descriptors open to one of the PVME VME-space devices (i.e., /dev/pvme/
vmeXXdXX) to use block-mode DMA transfers.

Similarly, the mem-blt option, when turned “on” causes user programs that use
mmap(2) to access VME memory to perform block-mode transfers.

Note that not all VME devices support block-mode transfers. This feature should be
enabled ONLY when you know that the target VME device supports block-mode.

Example 2. pvme.conf: VME Data Transfer Control Directives

Syntax:

dma-blt= “on” | “off”;
mem-blt= “on” | “off”;
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 34

Software Installation
5.6.3.4 VME Request and Arbitration Controls

Example 3. pvme.conf: VME Request and Arbitration Controls

Syntax:

ctl-mode= “syscon”;
arb-mode= “priority” | “round-robin”;
request-level=0..3
request-mode= “demand” | “fair”
release-mode: “release-on-request” | “release-when-done”
bus-timeout=1..7;
arb-timeout=1..2;
dtack-enable= “rescind”;

5.6.3.5 VME Power Controls

power-fail= “on” | “off”;

5.6.4 VME Bus Controls

The dvma-size property tells the PVME nexus driver the maximum size possible for a
single DVMA transfer on the VMEbus. This parameter controls the setting of the upper
bound of the VME slave map window, and consequently, how much memory in A32
space they slave map window can consume. Older Sun machines did not support a
DVMA window bigger than 1 MByte. This is the default. The legal limit for
UltraSPARC machines is 8 MBytes.

Syntax:

dvma-size=0x100000..0x800000;

5.6.5 VME Bus Power Off Support.

Starting with version 1.14 of PVME, we provide some limited support for powering off
the VMEbus while PVME is loaded.

The “power-fail” switch in the pvme.conf configuration file enables this support. By
default, it is “on,” and it is recommended that this not be changed.

5.6.5.1 VME Power Off Support: Theory of Operation

If power to the VMEbus is switched off, it generates an interrupt on the UltraSPARC
informing the PVME nexus driver of this event. The PVME nexus driver responds to
this event by putting itself into the “off-line” state. The PVME nexus driver informs the
user of this state of affairs by printing the following message on the console:

NOTICE: [pvme0 VMEbus off-line]
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 35

Software Installation
5.6.5.2 VME Power Off Support: The Off-Line State

When it enters the “off-line” state, the PVME nexus tries to protect the system by
denying direct attempts to access VME addresses on that bus. The PVME nexus driver
tries to accomplish this by imposing 3 access control policies:

1. In the off-line state, open(2), mmap(2), read(2), or write(2) to /dev/pvme/
vmeXXdXX devices will fail with the error ENXIO.
2. In the off-line state, the PVME nexus driver sends a SIGKILL signal to every pro-
cess that has an open file descriptor to any portion of VME space exported by the
PVME driver.

To illustrate, a user process that performed a direct open(2) on the device file /dev/
pvme/vme32d32 before the VMEbus went off-line would be killed to prevent
potentially disasterous attempts to access that VME space. The PVME nexus driver
manages this by saving references via proc_ref(9f) to every process that calls its
open(2) and close(2) entry points. When an “off-line” transition occurs, each of these
references is sent a SIGKILL from PVME interrupt context via proc_signal(9f).

3. Also, when in the “off-line” state, attempts to use add_drv(1m) to load a VME
device driver will fail, and the message

WARNING: pvme0: Target VMEbus off-line will be printed.

VME drivers that were already loaded at the time that power was shutdown can still be
safely unloaded, as long as their detach or fini routines do not attempt to access VME
memory. Generally, it is a good idea to unload VME device drivers controlling a
powered-down VMEbus to avoid erroneous attempts to access the VME devices.

If the user subsequently restores power to the VMEbus, attempts to load VME device
drivers with add_drv(1m) will cause the PVME to detect the power-on state. The PVME
driver will then load the VME driver, and print the following message on the console:

NOTICE: [pvme0 VMEbus on-line]

At this point, the VMEbus should be back to normal.

5.6.6 VME Power-Off Support: Caveats

The power-on/power-off support for the VMEbus provided by PVME is not foolproof.
If there are VME device drivers loaded underneath the PVME nexus driver, the
possibility exists to panic the system if the VMEbus is powered-off.

5.6.6.1 VME leaf driver mappings

Attempts to access powered-down VME devices via a VME driver loaded before the
power went off will fail, and could cause the machine to panic with a bus timeout error.
The reason is that file descriptors that may be open to the user’s VME device driver are
unknown to the PVME nexus driver. These file descriptors provide a “backdoor” to the
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 36

Software Installation
PVME driver’s VME space if bus mappings to VME space have been established
before the VMEbus went off-line.

5.6.6.2 VME leaf driver file descriptors

Similarly, the PVME nexus driver has no way to detect the open(2) and close(2)
operations on the user’s leaf driver. Because this is true, the PVME nexus driver cannot
save references to processes that may have opened and mmap’ed VME space via the
leaf driver prior to the PVME off-line transition. If the user or user’s leaf driver tries to
access the VME memory under-neath these old mappings, a PCI bus error and master
abort could result.

5.7 PVME Device Files

The PVME nexus driver creates 13 device files in /dev to permit access to the VMEbus
and the PVME control registers.

In general, the user should not need to access the PVME control registers.The VMEbus
device files are potentially useful when you wish to mmap(2) a chunk of VME address
space and access it directly with a user program.

5.7.1 VME Device Files
There are 12 device files exported by the PVME driver that represent the various VME
address spaces, plus associated data widths. These devices files are detailed in Table 9.

TABLE 12 VME Address Space Device Files

Device File Description
/dev/pvme/vme16d64 Used to access A16 space with D64 width

/dev/pvme/vme24d64 Used to access A24 space with D64 width.

/dev/pvme/vme32d64 Used to access A32 space with D64 width

/dev/pvme/vme16d32 Used to access A16 space with D32 width

/dev/pvme/vme24d32 Used to access A24 space with D32 width.

/dev/pvme/vme32d32 Used to access A32 space with D32 width.

/dev/pvme/vme16d16 Used to access A16 space with D16 width.

/dev/pvme/vme24d16 Used to access A24 space with D16 width.

/dev/pvme/vme32d16 Used to access A32 space with D16 width.

/dev/pvme/vme16d8 Used to access A16 space with D8 width.

/dev/pvme/vme24d8 Used to access A24 space with D8 width.

/dev/pvme/vme32d8 Used to access A32 space with D8 width.
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 37

Software Installation
5.7.2 PVME Control Registers

The PVME nexus driver exports another device file for direct access to the nexus’s
control registers:

/dev/pvme/nexctl-Used to access the PVME control registers.

This file is present for diagnostic purposes, such as to examine the current control
register settings of the PVME. It is not ordinarily something that the user has a need to
use. Since it permits direct access to the PVME device registers, it is possible to change
PVME control register settings with this mechanism. The user is advised to exercise
great caution if he desires to try this, since an incorrect value inserted into one of the
PVME control registers has the potential to put the PVME into a mode that could result
in a system panic.

5.7.3 VME Device File Example

The VME device files give a user the ability to access any of the VME address spaces
directly.

To illustrate, VME A32 space may be accessed by a user program by opening the /dev/
pvme/vme32d32 device file and then using mmap(2) or lseek(2) and read(2) or
write(2) to access the desired address in VME A32 space.

Example 4, “User mapping of a VME address space,” on page 35 illustrate show this
might be done.
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 38

Software Installation
Example 4. User mapping of a VME address space

char * vme_map(char * vme_device, int vme_off, int bytes)

{
int fd;
fd = open(vme_device, O_RDWR);
printf("[Mapping 0x%x bytes at VME offset 0x%x]\n", bytes, vme_off);
return (mmap((caddr_t)0, bytes, PROT_RW, MAP_SHARED, fd, vme_off));

}

#define VME_OFFSET 0x00100000
#define VME_BYTES 0x00010000

int main()
{

char * vme_mem;
char vme_byte;
/*
* map VME_BYTES of VME memory at location
* VME_OFFSET in VME A32 space.
*/
vme_mem = vme_map("/dev/pvme/vme32d32",

VME_OFFSET, VME_BYTES);
/*
* Now read the first byte at the
* specified VME offset.
*/
vme_byte = vme_mem[0];

}

rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 39

Software Installation
5.8 Building the test programs

The test programs pvme_test and pvme_pages in the Tests directory are built using the
Makefiles provided. The Makefiles have been structured according to function. This
structure is detailed in Table 10, “Test directory makefile structure,” on page 36.

By default, the build uses the GCC compiler. The file Makefile controls whether to
build the program using the Solaris compiler or the GNU compiler. To switch the build
to use the Sun compiler, edit the Makefile and change the line that says:

include ./Make.$(ARCH).gcc

to

include ./Make.$(ARCH).solaris

5.9 Known Limitations

If a VME master transfers data to PCI memory at the same time as the CPU attempts to
access VME space, a PCI timeout may occur that causes the system to panic with the
message “too many retries”.

This problem arises because Sun initializes the PCI bus arbiter to use an insufficient
number of retries when contention occurs. The result it that if a VME master holds the
bus for a long time when the CPU is trying to access the PCI space, the PCI bus arbiter
may gives up too early.

Before you attempt to access the VMEbus with the CPU, you should make sure that no
VMEbus device is performing a tranfer of data to PCI memory. Typically, a way to
trigger this problem is to use mmap(2) to map a chunk of

TABLE 13 Test directory makefile structure

File Function

Makefile Top level makefile that drives the program build

Make.rules Specifies the objects to be build and their depen-dencies.

Make.<arch>.gcc Location of the GNU GCC compiler, and appro-priate option
switches.

Make.<arch>.solaris Location of the Solaris C compiler, and appropriate options
switches.
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 40

Software Installation
VME memory into a program’s address space and then to access the mmaped VME
memory it while a VME device is performing a DMA transfer. Such simultaneous
attempts to access the VMEbus should be avoided by the user as much as possible.
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 41

Byte Swapping Capability
CHAPTER 6 Byte Swapping Capability

6.1 General

The SF_VME board rev. F is a new member of the Solflower SFPCI-VME Adaptor
series. It implements hardware byte swapping function to solve the problems inherent in
joining Big and Little Endian buses. The SF_VME rev F is physically and electrically
backward compatible with the older (rev D & E) revisions. The SFPCI-VME Bridge can
be upgraded by simply replacing the VME card in the VME crate while PCI card and
cable remain the same. Like its predecessors, SF_VME rev F needs to be installed in
slot 1 in the VME crate in order to be a system controller, and fully function its byte
swapping capability.

When byte swapping is disabled (by default), the SF_VME rev. F board acts like a
SF_VME rev E or rev D board. This mode is used for Solaris system environment
where data paths don't need to be swapped. The SF_VME rev. F board incorporates a
Xilinx CPLD XC95xx. All the logics for byte swapping are implemented in XC95xx.
Byte swapping function can be overwritten by on-board hardware jumper. All the byte
swapping signals including DS1*, DS0*, A1, LW* and the controls of the byte lanes
come from XC95xx. There will be three VME A16 addresses for byte swapping
module’s register space: one for byte swapping command, one for status, and one for ID
register. Command register sets up the byte swapping capability. Status register
indicates the current status of the board. The content of the ID register indicates board
revision. An A16 address for byte swapping can be set in the range CF00 to FF00, and is
configurable with jumpers. (In fact, byte swapping address can be programmed in
Solflower factory to any address space within 0x0000 to 0xFFFF.) Currently the default
address is set to FF00. Command register is read/writable while status and ID register
only allow reading. The address for command register is *F00 where (*) is configurable
from C to F with jumpers. Similarly, address for status and ID registers are *F02, *F04
respectively. For more detail about jumper configurations, please refer to figure 14 to
figure 17. The following table describes the contents and functions of command
register. Byte swapping currently is not supported for D64, and Unaligned transfer.

TABLE 14 Byte Swapping Command Register

command[7:0] function

00001000 no swapping (power-up default)

00000xx1 enable byte swapping for byte

00000x10 enable byte swapping for word

000001xx enable byte swapping for long word

00000111 enable all swapping (byte, word, long
word)
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 42

Byte Swapping Capability
The content for ID register should reflects the revision of SF_VME Adaptor board. If
this is a rev. F board, a read back from ID register will return 01000110, which is an “F”
in ASCII.

Application software can enable/disable byte swap logic “on-the-fly”. Once the byte
swap function is set up by executing a command, byte swapping function is ready.

There are three main commands for the byte swap functions:

. enable byte swap (byte, word, long word),

. reading the current byte swap status,

. reading the ID register for rev F (01000110 in binary).

Currently there are three modes of byte swapping supported: byte swap, word swap
(two bytes), and long word (4 bytes) swap. These byte swapping modes can be set up
with one command. There is also one single command to enable all three modes of byte
swapping. In that case byte swapping is automatic for byte, word, and long word.

FIGURE 14 Jumper setting for address 0xFF00

Jumper U44

Jumper U45

A12

A13

VCC

Address=FF00

4.7k Ohm4.7k Ohm

10 Ohm

10 Ohm
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 43

Byte Swapping Capability
FIGURE 15 Jumper setting for address 0xEF00

FIGURE 16 Jumper setting for address 0xDF00

Jumper U44

Jumper U45

A12

A13

VCC

Address=EF00

4.7k Ohm4.7k Ohm

10 Ohm

10 Ohm

Jumper U44

Jumper U45

A12

A13

VCC

Address=DF00

4.7k Ohm4.7k Ohm

10 Ohm

10 Ohm
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 44

Byte Swapping Capability
FIGURE 17 Jumper setting for address 0xCF00

6.2 Theory Of Operation

The core of byte swapping function lies in the Xilinx XC95xx CPLD. This chipset
responds to simple read/write in certain VME A16 address to set up byte swapping
functions. Once the byte swapping function is enabled by a simple command, it will
automatically exercise all byte bank control signals to gate the desired bytes and
regenerate other control signals (such as DS1*, DS0*, A1, LW*, and other signals). All
these signals are carefully design to meet VME timing specs. Byte swapping operation
is transparent to the end user without compromising speed of any read/write access.

Byte swapping between PCI and VME requires cautiousness, as VME bus has a set of
signals addressing the byte lanes. These signals are: DS1*, DS0*, A1, and LW*.
Depending on the mode of swapping, (i.e., byte, word, and long word) these signals will
have to be regenerated on VME side in order to achieve the correct bytes read/written.

To illustrate byte swapping operation, we need to look at the system as a whole. If an
end user wants to write a word 0xAABB from his/her little endian machine (such as an
Intel Platform Linux Box)to VME memory, he/she will enter a write command from the

Jumper U44

Jumper U45

A12

A13

VCC

Address=CF00

4.7k Ohm4.7k Ohm

10 Ohm

10 Ohm
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 45

Byte Swapping Capability
keyboard. Once the end user hits enter key to execute the command, the CPU in the
local machine will process this word and pass it downstream, maybe through a couple of
PCI Bridges, and reaches the Universe PCI-VME Bridge. The Universe PCI-VME
Bridge then processes this word and passes it to VME bus. Because the different endian
between PCI (of an Intel Platform) and VME, this byte will appear on the VME side as
0xBBAA. This can be understood by looking at DS1*, DS0*, A1, and LW* signals on
the VME bus. In this case the values for these signals will be 0, 0, 0,1 respectively.
Since our goal is to write 0xAABB on VME bus, these signals will have to be
manipulated and changed to different values in order to write to the right bytes on VME
bus. This is the Xilinx XC95xx job to regenerate these four signals. Now they become
0, 0, 1, 1(DS1*, DS0*, A1, and LW*). These signals tell the VME memory to write the
swapped bytes. Along with the four signals, bytes are gated through appropriate byte
lanes by the control signals from XC95xx, and passed on to the VME bus. 0xAABB is
then written to the VME memory.

6.3 Byte Swapping Detail

Currently rev F support three modes of byte swapping, namely, byte swapping for bytes,
byte swapping for words, and byte swapping for long words. The following table
describes swapping detail. Each swapping mode will be discussed in this section.

TABLE 15 Byte Swapping table

Byteswap behaviors:

In the table above "VME Address" is the address as seen by the VME Bus analyzer.
"Host Data" is the result of the data being read from the VME into a register in the CPU.
"Read Address (Host)" is the address read from the boards mapped into the host
system's memory. "Width" is the number of bits read into the register.

No Byteswap (Little Endian) Register Byteswap (Little Endian)Read Address
(Host)

Width
VME Address Host Data VME Address Host Data

0xXXXXXXX0 32 0xXXXXXXX0 0xDDCCBBAA 0xXXXXXXX0 0xAABBCCDD
0xXXXXXXX0 0xXXXXXXX0 0xBBAA 0xXXXXXXX0 0xAABB
0xXXXXXXX2

16
0xXXXXXXX2 0xDDCC 0xXXXXXXX2 0xCCDD

0xXXXXXXX0 0xXXXXXXX0 0xAA 0xXXXXXXX0 0xAA
0xXXXXXXX1 0xXXXXXXX1 0xBB 0xXXXXXXX1 0xBB
0xXXXXXXX2 0xXXXXXXX2 0xCC 0xXXXXXXX2 0xCC
0xXXXXXXX3

8

0xXXXXXXX3 0xDD 0xXXXXXXX3 0xDD

rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 46

Byte Swapping Capability
6.3.1 Byte Swapping for bytes:

FIGURE 18 Byte Swapping For Bytes

At this time the swapping for byte access remains unchanged. This means single bytes
access on the PCI side and VME side are the same as in no swapping. This can be seen
from the table 15. Though the charateristics of VME bus “swap” the bytes automatically
to upper byte instead of writing to lower byte and vice versa. This can be seen from the
following print out. First byte (0x12) written will appear after Universe as upper byte at
0x00000000, and second byte (0x34) is written to lower byte at address 0x00000001,
and so forth.

Linux VMIC vme_poke:

vme_poke -a VME_A32SD -A 0x00 -d VME_D8 -F data_b
data_b: 0x12 0x34 0x56 0x78

Byte write VME analyzer prinout:

TRIG 0.00 us - 0000000012.. W UBYTE OK OK ------- 1 1 0D 1

 1 0.52 us - 0000000134 W LBYTE OK OK ------- 1 1 0D 1

 2 0.48 us - 0000000256.. W UBYTE OK OK ------- 1 1 0D 1

 3 0.52 us - 0000000378 W LBYTE OK OK ------- 1 1 0D 1

Universe II

D[7:0]

D[15:8]

D[23:16]

D[31:24]

D[7:0] / D[23:16]

D[15:8] / D[31:24]

Xilinx
XC95xx
Byte Swap
Logic

DS1* DS0* A1 LW*

VD[31:24]

VD[23:16]

VD[15:8]

VD[7:0]

VME
Devices

DS1* DS0* A1 LW*

PCI Bus
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 47

Byte Swapping Capability
6.3.2 Byte swapping for words

FIGURE 19 Byte Swapping For Words

For word access, each word, D[15:0] and D[31:16] appears on the same byte lanes on
VME side. The swapping is done by swap the two bytes of the word as shown in Figure
19. Along with data, control signals such as DS1*, DS0*, A1, LW* are regenerated by
Xilinx XC95xx to appropriate values before VME devices/memory.

Universe II

D[7:0]

D[15:8]

D[23:16]

D[31:24]

D[7:0] / D[23:16]

D[15:8] / D[31:24]

Xilinx
XC95xx
Byte Swap
Logic

DS1* DS0* A1 LW*

VD[31:24]

VD[23:16]

VD[15:8]

VD[7:0]

VME
Devices

DS1* DS0* A1 LW*

PCI Bus
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 48

Byte Swapping Capability
6.3.3 Byte swapping for long words

FIGURE 20 Byte Swapping for long words

Byte swapping for long word requires swapping four bytes simultaneously. As shown in
the figure above, there is a one-to-one swapping for the four byte lanes. Along with
data, control signals such as DS1*, DS0*, A1, LW* are regenerated by Xilinx XC95xx
to appropriate values before VME devices/memory.

6.4 Byte Swapping For Interrupt Vector

Depending on different interpretations with different software application, interrupt
vector can be masked out, and byte swapping for interrupt vector could be treated
differently. Currently, SF_VME rev F. board treats the interrupt vector as in no
swapping scenario, regardless whether the board was set to swapping mode or non-
swapping mode. That means when interrupt vector comes in from the VME side, there
will be no byte swapping for the interrupt vector. In the case when the vector is a one
byte data, the Tundra Universe VME-PCI bridge on board will receive it as a lower byte
data.

Universe II

D[7:0]

D[15:8]

D[23:16]

D[31:24]

D[23:16]

D[31:24]

Xilinx
XC95xx
Byte Swap
Logic

DS1* DS0* A1 LW*

VD[31:24]

VD[23:16]

VD[15:8]

VD[7:0]

Devices

DS1* DS0* A1 LW*

PCI Bus

D[15:8]

D[7:0]
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 49

Byte Swapping Capability
6.5 Byte Swapping Set Up Utility with Linux 2.4 Kernel

Solflower provides an utility program called “swp_ctl” to enable/disable byte swapping
function. With SF_VME rev F installed and flat cable connected, power on the VME
crate and your host that runs Linux 2.4 Kernel. The "swp_ctl" program is used to
enable/disable hardware byte-swapping. When it's first started, it needs to know the
address of the cmd register. There are jumpers on the board which allow us to set this
address. The available range is from 0x0000CF00 to 0x0000FF00. After setting these
jumpers, we can tell “swp_ctl” where the address is set. After byte swapping function is
set up, user can run his/her own software to talk to VME devices. The following is an
example of execution. Commands are in bold.

[root@localhost]# ./swp_ctl

Type "?" for help.

Command

swp_ctl>?

disable [bs|ws|ls|all] -- Disable swapping

enable [bs|ws|ls|all] -- Enable swapping

exit -- Exit swp_ctl

help -- Print command list with syntax

print [cmd|sta|bid] -- Display the specified register's state

? -- Print command list with syntax

quit -- Exit swp_ctl

set <address> -- Specified the address of the cmd register

swp_ctl> set ff00

cmd register address: 0x0000FF00

Now we can examine the cmd, status, and id registers.

swp_ctl> pr cmd sta bid

cmd register: 0x08FF
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 50

Byte Swapping Capability
sta register: 0x05FF

bid register: 0x46FF

--0x46 is “F” in ASCII, stands for revision F.

These are the default values of these registers.

Here is the possible settings of the cmd register:

Values Meaning

0x01FF Enable byte-swap

0x02FF Enable word-swap

0x04FF Enable lword-swap

0x08FF Disable all swapping

0x07FF Enable all swapping

swp_ctl> disable [bs|ws|ls|all]

-- Disable swapping

swp_ctl> enable [bs|ws|ls|all]

-- Enable swapping
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 51

System Specifications:
CHAPTER 7 System Specifications:

7.1 VME interface information

The VME interface board must always installed in VME chassis slot 1. As system
controller, the VME interface board provides the following functions:

7.1.1 Bus arbitration

PCI-VME interface provides fix priority arbitration. BG3 is the highest request and
selected as default.User can change the Bus Request level to BR0, BG1, BG2 as
required

7.1.2 IACK

Only ROAK (Release On AcKnowledge) interrupting devices are supported Default
VME interrupt level are set for IRQ1, IRQ2, IRQ3 and IRQ4.

7.1.3 SYSCLK

The PCI-VME provides 16MHZ SYSCLK signal to the VME bus.

7.1.4 Bus Timer

VME bus timeout is set to 1000us and bus arbitration timeout is set to 256us,

7.1.5 VME address spaces

Due to the PCI space available in the Sun Ultra machines, the entire A32 space cannot
be mapped in to physical address space.

Only parts of the VME address space are available at any time. The limit on how large
the A32 address space can be mapped are different in different system I/O
configuration.

The A16 permits address from 0x0000 to 0xffff
The A24 permits address from 0x000000 to 1000000
The A32 permits address range from 0x00000000 to max available on the PCI address
space. VME transfers dma to PCI memory is set for 1MB window and supports both
A24 and A32 spaces
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 52

System Specifications:
7.1.6 AM codes

PCI-VME supports the following AM codes

2D Short supervisory access
3D Standard supervisory data access
3C Standard supervisory 64 bit block transfer
0D Extended supervisory data access.
0C Extended supervisory 64 bit block transfer

or

2D Short supervisory access
3D Standard supervisory data access
3F Standard supervisory block transfer
0D Extended supervisory data access.
0F Extended supervisory block transfer

7.1.7 Board Size 6U VME format 233mm x 160mm

7.1.8 Power Consumption less than 5W

7.1.9 Voltage 5V DC

7.2 6.2 PCI bus information

PCI-VME and uses the Universe chip, produced by Tundra Semiconductor as PCI
controller. The universe is PCI 2.1 compliant. More specification about the Universe
can be found at http://www.tundra.com/Tundra/unidex.html.

7.2.1 Size 6.875” x 4.2” short card

7.2.2 Bus clock Frequency 25 -33MHz

7.2.3 Data width 32/64bit

7.2.4 Voltage 5V DC

7.2.5 Power consumption less than 7.5W
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 53

System Specifications:
7.3 VME chassis Specifications

7.3.1 6-slot VME enclosures dimension 14 ½” x 5 ½” x 12 ¼” (HxWxD)

450W auto-switching 110/220V AC 50/60Hz power supply

7.3.2 4-slot VME enclosure dimension 4” x 16” x 16” (HxWxD)

250W selectable 110/220V AC 50/60Hz power supply

7.4 Cable specifications

Cable are in 18”(1.5ft), 36” (3ft), 10ft, 15ft, 20ft, 24ft length, 100 pin flat ribbon
shielded cable.
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 54

Warranty and Repair
CHAPTER 8 Warranty and Repair

Solflower products are warranted against defective materials and workmanship within
the warranty period of one year from date of invoice. Within the warranty period,
Solflower will, free of charge, repair or replace any defective unit covered by this
warranty, shipping prepaid. A Return of Materials Authorization number (RMA #)
should be obtained from Solflower prior to the return of any defective product.

Solflower’s warranty is limited to the repair or replacement policy described above and
neither Solflower or its agent shall be responsible for consequential or special damages
related to the use of their products.

Any questions or requests for repair or technical support should be directed to:

Solflower Computer, Inc.
3511 Thomas Road, Ste-2
Santa Clara, CA 95054

Phone: (408) 982-8680
Fax: (408) 982-8685
rev 2.0 SFPCI-VME SERIES User’s Guide and Installation Manual 55

Warranty and Repair
rev 2.0 SFPCI -VME SERIES User’s Guide and Installation Manual 56

	CHAPTER 1 Overview
	1.1 INTRODUCTION
	1.2 APPLICABLE DOCUMENTS
	1.3 GENERAL DESCRIPTION
	1.4 UNPACKING INSTRUCTIONS
	FIGURE 1 SFPCI-VME Components

	CHAPTER 2 SFPCI-VME Series Installation
	2.1 Jumper Installation
	2.1.1 Interface Card Jumpers Select
	TABLE 1 Interrupt select jumpers
	TABLE 2 Bus Request and Bus Grant select jumpers
	FIGURE 2 SFPCI-VME set for BG3 and BR3 Interrupt Level 1234

	2.1.2 VME Backplane Jumper Select
	FIGURE 3 SFPCI-VME Enclosure with 6-Slot and 4-Slot Back-plane

	2.2 SF_PCI Card Installation
	2.2.1 Install SF_PCI Card to Sun Microelectronics (SME) Ultra AX SPARCengine
	FIGURE 4 SF_PCI card installation to Ultra AX SPARCengine

	2.2.2 Install SF_PCI Card to SME Ultra AXi SPARCengine
	FIGURE 5 Ultra AXi Layout

	2.2.3 Install SF_PCI Card to Sun Ultra 5, Ultra 10
	FIGURE 6 Install SF_PCI card to Ultra 5
	FIGURE 7 Install SF_PCI Card to Ultra10

	2.2.4 Install SF_PCI Card to Ultra 30 / Ultra 60 system
	FIGURE 8 install PCI card to Ultra30 / Ultra 60 system
	FIGURE 9 Ultra 30 back side

	2.2.5 Select SF_PCI slot on Ultra 450 system
	FIGURE 10 install SF_PCI card to Ultra 450 system
	FIGURE 11 Ultra 450 Mother Board and PCI slot location
	TABLE 3 450_SLOT_TABLE

	2.2.6 SF_PCI Installation on SunFireV250
	TABLE 4 V250 PCI slots
	FIGURE 12 V250 PCI slots location

	2.2.7 SF_PCI card Installation on Sun Blade 1500
	TABLE 5 Sun Blade 1500 PCI slots
	FIGURE 13 Sun Blade 1500 PCI slot location

	2.3 VMEbus Interface Board Installation
	2.4 Cable Installation
	2.5 Boot Up System

	CHAPTER 3 Architecture Description
	3.1 VMEbus Interface
	3.1.1 Universe as VMEbus Slave
	3.1.2 Universe as VMEbus Master

	3.2 PCI Bus Interface
	3.2.1 Universe as PCI Slave
	3.2.2 Universe as PCI Master

	3.3 Interrupter and Interrupt Handler
	3.3.1 Interrupter
	3.3.2 VMEbus Interrupt Handling

	3.4 DMA Controller

	CHAPTER 4 Performance Consideration
	TABLE 6 PCI Slave Channel Performance
	TABLE 7 VME Slave Channel Performance
	TABLE 8 DMA Channel Performance
	TABLE 9 Daisy Chains
	TABLE 10 Cable Delay

	CHAPTER 5 Software Installation
	5.1 Introduction
	5.2 PVME Features
	5.3 Components
	TABLE 11 PVME release components

	5.4 Installation
	5.4.1 Driver Installation Location
	5.4.2 Driver Device Links
	5.4.3 Driver Installation
	5.4.4 Driver Removal

	5.5 Theory of Operation
	5.6 pvme.conf - PVME Configuration File Options
	5.6.1 interrupt-priorities
	5.6.2 pci-exclude
	5.6.3 PVME Control Register Settings
	5.6.3.1 PCI Bus Controls
	5.6.3.2 VME Posted Write Control
	5.6.3.3 VME Data Transfer Control
	5.6.3.4 VME Request and Arbitration Controls
	5.6.3.5 VME Power Controls

	5.6.4 VME Bus Controls
	5.6.5 VME Bus Power Off Support.
	5.6.5.1 VME Power Off Support: Theory of Operation
	5.6.5.2 VME Power Off Support: The Off-Line State

	5.6.6 VME Power-Off Support: Caveats
	5.6.6.1 VME leaf driver mappings
	5.6.6.2 VME leaf driver file descriptors

	5.7 PVME Device Files
	5.7.1 VME Device Files
	TABLE 12 VME Address Space Device Files

	5.7.2 PVME Control Registers
	5.7.3 VME Device File Example

	5.8 Building the test programs
	TABLE 13 Test directory makefile structure

	5.9 Known Limitations

	CHAPTER 6 Byte Swapping Capability
	6.1 General
	TABLE 14 Byte Swapping Command Register
	FIGURE 14 Jumper setting for address 0xFF00
	FIGURE 15 Jumper setting for address 0xEF00
	FIGURE 16 Jumper setting for address 0xDF00
	FIGURE 17 Jumper setting for address 0xCF00

	6.2 Theory Of Operation
	6.3 Byte Swapping Detail
	TABLE 15 Byte Swapping table
	6.3.1 Byte Swapping for bytes:
	FIGURE 18 Byte Swapping For Bytes

	6.3.2 Byte swapping for words
	FIGURE 19 Byte Swapping For Words

	6.3.3 Byte swapping for long words
	FIGURE 20 Byte Swapping for long words

	6.4 Byte Swapping For Interrupt Vector
	6.5 Byte Swapping Set Up Utility with Linux 2.4 Kernel

	CHAPTER 7 System Specifications:
	7.1 VME interface information
	7.1.1 Bus arbitration
	7.1.2 IACK
	7.1.3 SYSCLK
	7.1.4 Bus Timer
	7.1.5 VME address spaces
	7.1.6 AM codes
	7.1.7 Board Size 6U VME format 233mm x 160mm
	7.1.8 Power Consumption less than 5W
	7.1.9 Voltage 5V DC

	7.2 6.2 PCI bus information
	7.2.1 Size 6.875” x 4.2” short card
	7.2.2 Bus clock Frequency 25 -33MHz
	7.2.3 Data width 32/64bit
	7.2.4 Voltage 5V DC
	7.2.5 Power consumption less than 7.5W

	7.3 VME chassis Specifications
	7.3.1 6-slot VME enclosures dimension 14 º” x 5 º” x 12 ¹” (HxWxD)
	7.3.2 4-slot VME enclosure dimension 4” x 16” x 16” (HxWxD)

	7.4 Cable specifications

	CHAPTER 8 Warranty and Repair

